Modeling ‘repeated’ Records : Covariance Functions and Random Regression Models to Analyse Animal Breeding Data

نویسنده

  • Karin Meyer
چکیده

INTRODUCTION There is a plethora of statistical literature on modeling and analysis of repeated records, often referred to as longitudinal or growth curve data. These can be analysed fitting a linear model using (restricted) maximum likelihood (Ware 1985). This framework accommodates a wide range of assumptions about the structural form of covariance matrices (e.g. Jennrich and Schluchter 1986). Until recently data from animal breeding applications have generally being analysed invoking one of the extremes of this model, namely a simple constant variance, univariate “repeatability” model or a fully parameterised, multivariate model with unstructured covariance. A specific feature of quantitative genetic analyses, not shared by other fields, is that we want to partition the variation due to individuals into its genetic and environmental components. This paper describes how an intermediate parameterisation can be achieved by fitting a covariance function (CF) for each source of variation, genetic and environmental, using a random regression (RR) model, and outlines Restricted Maximum Likelihood (REML) estimation of a parsimonious covariance structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random regression models for estimation of covariance functions of growth in Iranian Kurdi sheep

Body weight (BW) records (n=11,659) of 4961 Kurdi sheep from 215 sires and 2085 dams were used to estimate the additive genetic, direct and maternal permanent environmental effects on growth from 1 to 300 days of age. The data were collected from 1993 to 2015 at a breeding station in North Khorasan province; Iran. Genetic parameters for growth traits were estimated using random regression test-...

متن کامل

Estimates of genetic covariance functions assuming a parametric correlation structure for environmental effects

A random regression model for the analysis of ‘repeated’ records in animal breeding is described which combines a random regression approach for additive genetic and other random effects with the assumption of a parametric correlation structure for within animal covariances. Both stationary and non-stationary correlation models involving a small number of parameters are considered. Heterogeneit...

متن کامل

Analysis of Test Day Milk Yield by Random Regression Models and Evaluation of Persistency in Iranian Dairy Cows

Variace / covariance components of 227118 first lactaiom test-day milk yield records belonged to 31258 Iranian Holstein cows were estimated using nine random regression models. Afterwards, different measures of persistency based on estimation breeding value were evaluated. Three functions were used to adjust fixed lactation curve: Ali and Schaeffer (AS), quadratic (LE3) and cubic (LE4) order of...

متن کامل

Estimation of Variance Components for Body Weight of Moghani Sheep Using B-Spline Random Regression Models

The aim of the present study was the estimation of (co) variance components and genetic parameters for body weight of Moghani sheep, using random regression models based on B-Splines functions. The data set included 9165 body weight records from 60 to 360 days of age from 2811 Moghani sheep, collected between 1994 to 2013 from Jafar-Abad Animal Research and Breeding Institute, Ardabil province,...

متن کامل

Exploring the Use of Random Regression Models withLegendre Polynomials to Analyze Clutch Sizein Iranian Native Fowl

Random regression models (RRM) have become common for the analysis of longitudinal data or repeated records on individual over time. The goal of this paper was to explore the use of random regression models with orthogonal / Legendre polynomials (RRL) to analyze new repeated measures called clutch size (CS) as a meristic trait for Iranian native fowl. Legendre polynomial functions of increasing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998